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An efficient numerical bifurcation and continuation method for the Navier–Stokes
equations in cylindrical geometries is presented and applied to a nontrivial fluid dy-
namics problem, the flow in a cylindrical container driven by differential rotation.
The large systems that result from discretizing the Navier–Stokes equations, espe-
cially in regimes where inertia is important, necessitate the use of iterative solvers
which in turn need preconditioners. We use incomplete lower–upper decomposition
(ILU) as an effective preconditioner for such systems and show the significant gain
in efficiency when an incomplete LU of the full Jacobian is used instead of using
only the Stokes operator. The computational cost, in terms of CPU time, grows with
the size of the system (i.e., spatial resolution) according to a power law with ex-
ponent around 1.7, which is very modest compared to direct methods, indicating
the appropriateness of the schemes for large nonlinear partial differential equation
problems. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The development of modern linear algebra techniques and the availability of fast pro-
cessors and large amounts of memory allow one to contemplate numerical bifurcation and
continuation studies of large extended systems such as in fluid dynamics. The main difficulty
with this program of study is that it is not practical to solve the resulting large linear algebra
problems by direct methods. Iterative methods tailored according to the problem at hand
are needed. They are based on subspace iteration, Krylov methods, and efficient precondi-
tioners. In this paper, we put a combination of these components together and apply them
to a nontrivial fluid dynamics problem—the flow in a cylindrical container driven by the
rotation of the endwalls. The base state is nontrivial, and in different regions of parameter
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space it undergoes saddle-node and Hopf bifurcations. We also locate a codimension-2 cusp
bifurcation.

For low-dimensional systems—e.g., models of population dynamics, chemical reactions,
neuron models, coupled oscillators, and lasers (see [11] for specific references)—there are
readily available continuation and bifurcation packages such as AUTO, CONTENT, and
DSTOOL. Many of these low-dimensional systems are governed by a large number of
bifurcation parameters, and these packages have been used to deal with high-codimension
bifurcations (mainly local), as well as continuation of invariant manifolds (e.g., periodic,
homoclinic, and heteroclinic orbits). Due to the small size of the associate linear systems
these are designed for, they implement direct solvers. These types of methods are based
fundamentally on two key ideas, arclength continuation and the use of extended systems
(e.g., see [12]).

For fluid dynamics problems, the dynamical system is large in dimension (due to the
discretization in space) and typically has a small number of bifurcation parameters (e.g.,
Reynolds numbers describing governing forces and geometric parameters). Continuation
of steady states or rotating wave solutions in, for example, the Taylor–Couette problem,
have been performed using finite differences and/or Fourier expansions in space with
AUTO (e.g., [5, 19, 23]), and with finite elements and extended systems techniques (e.g.,
[2, 26]). The spatial resolution available to these approaches is limited by the use of direct
solvers.

Recent developments in iterative methods (e.g., [20, 22]) allow for a marked increase in
the spatial resolution that can be utilized. However, for these iterative methods to be robust
and efficient, care must be taken with preconditioning. The specifics of the preconditioner
depend critically on how space is discretized. For spectral discretization, Edwards et al. [7]
advocate the use of the Stokes operator in spectral space as the preconditioner. Example
fluid dynamics problems close to the bifurcation point have been successfully solved (e.g.,
[17]). Canuto et al. [1] also suggest the use of finite-difference or finite-element-based
preconditioners within a spectral method in general. Demaret and Deville [3] have taken
this approach for the Stokes equation (Re → 0). However, this approach is cumbersome,
as the governing equations must be discretized in two distinct ways but within the same
formulation (e.g., velocity–pressure and streamfunction–vorticity).

In finite-difference or finite-element methods, the choice of preconditioners has been
studied more extensively, and the use of incomplete lower–upper decomposition (ILU) is
commonly used and is available in several packages, e.g., SPARSKIT [21]. This is the
approach used in the present study.

Apart from continuation of solutions, one often also wants to determine their stability
under variation of parameters. For large systems, there are essentially two practical options:
subspace iterations [25] and Arnoldi methods [13], both of which are based on the power
method for the eigenvalue problem. To detect bifurcation phenomena, Cayley and shift-
invert transformations are almost always needed [18]. Here, we have used the Arnoldi
methods.

The layout of the paper is as follows. Section 2 briefly describes the test fluid dynam-
ics problem and the formulation of the Navier–Stokes equation and boundary conditions.
Section 3 describes the discretization and sets up the various aspects of the problem (con-
tinuation of the basic state, linear stability, and nonlinear evolution). Section 4 describes
the application of the numerical protocol to a series of related test cases and details the
convergence and efficiency of the techniques.
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2. FORMULATION

Dynamical systems governed by partial differential equations (PDE) give, once dis-
cretized in space, a system of differential equations (ODE) of very large dimension. The
numerical methods used to deal with these problems need to take into consideration the
specific details of the problem in order to be robust and efficient.

There are many fundamental issues in fluid dynamics that can be effectively addressed
by the study of flows in cylindrical containers (e.g., symmetry breaking and transition to
complex dynamics). The attraction of such a flow geometry is that, although the system is
fully three-dimensional, the invariance of the equations and boundary conditions to arbitrary
rotations in azimuth (the SO (2) symmetry) naturally provides a periodic direction (the
azimuthal direction, θ ) which can be efficiently exploited in the solution scheme. Further,
there are numerous fundamental flows (e.g., Taylor–Couette and vortex breakdown in an
enclosed cylinder) where not only is the basic state axisymmetric but in extensive regions
of parameter space the bifurcated solutions are also axisymmetric [10, 27].

We consider the flow of an incompressible fluid in a completely filled cylinder of radius
R and height H with bottom and sidewall rotating at a constant angular speed �b and
driven by the differential rotation of its top lid at angular speed �t , as shown schematically
in Fig. 1. Using R as the length scale and the viscous time scale R2/ν, we define three
nondimensional parameters that govern the dynamics:

the base Reynolds number Reb = �b R2/ν,
the top Reynolds number Ret = �t R2/ν,
the aspect ratio �= H/R.

We use cylindrical polar coordinates (r, θ, z), and since the problems we consider are
axisymmetric, the velocity components (u, v, w) will only be functions of (r, z) and time.

For planar two-dimensional and axisymmetric problems, a convenient formulation is in
terms of the streamfunction and vorticity since it is implicitly divergence-free. Here we
use a biharmonic formulation in terms of the streamfunction only, in which the boundary
conditions for the streamfunction are derived directly from the no-slip condition. This is the
method used in Lopez et al. [16]; the number of variables is smaller than in a conventional
streamfunction–vorticity formulation, and the boundary conditions can be very efficiently
implemented for semiimplicit time evolution. In contrast, the boundary conditions on the
vorticity are cumbersome in a semiimplicit formulation, and one usually resorts to explicit
time integration (e.g., see [6]). However, with the biharmonic formulation, the order of
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FIG. 1. Schematic of the flow geometry.
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the equations increases. The numerical methods detailed below can also be implemented
in other formulations of the governing equations, e.g., streamfunction–vorticity, primitive
variables, and velocity potentials.

For rotating flows, the velocity has three nonzero components. The meridional com-
ponents u and w are described by the streamfunction ψ , and the azimuthal component of
velocity, v, is incorporated in terms of the (axial) angular momentum, γ = rv. In cylindrical
polar coordinates, the velocity and vorticity vectors are

u = (−ψz, γ, ψr )/r and ∇ × u = (−γz, rη, γr )/r,

where ψ is the streamfunction, and η, the azimuthal component of vorticity, is related to
ψ via

�∗ψ = ψzz + ψrr − ψr/r = −rη.

Note that contours of ψ in an (r, z) plane depict the streamlines of the flow, and likewise
contours of γ depict the vortex lines. The governing equations are the azimuthal components
of the Navier–Stokes equations and their curl:

∂tγ = �∗γ + 1

r
ψzγr − 1

r
ψrγz,

(1)

∂t�∗ψ = �2
∗ψ + 1

r
ψz∂r (�∗ψ) − 1

r
ψr�∗ψz − 2

r2
ψz�∗ψ − ∂z(γ

2/r2).

The governing equations can be written in a more compact form using x = (γ, ψ),

∂t Bx = Lx + N (x, x) = f (x), B =
(

1 0
0 �∗

)
, L =

(
�∗ 0

0 �2
∗

)
, (2)

and N is the quadratic nonlinearity. The corresponding boundary conditions are:

axis (r = 0) ψ = ψr = γ = 0
top (z = �) ψ = ψz = 0, γ = r2Ret

bottom (z = 0) ψ = ψz = 0, γ = r2Reb

sidewall (r = 1) ψ = ψr = 0, γ = Reb.

(3)

To solve for the basic state, xb = (γb, ψb), the left-hand side of (2) is set to zero. The
linear stability of the basic state is determined by linearizing (2) about the basic state, with

x(r, z, t) = xb(r, z) + eλt x p(r, z),

where the perturbation x p satisfies homogeneous boundary conditions. The linearized equa-
tions for x p lead to the generalized eigenvalue problem

λBx p = Lx p + N (xb, x p) + N (x p, xb) = D f (xb)x p, (4)

where D f (xb) is the Jacobian of the right-hand side of (2) evaluated at xb.
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TABLE I

Tabulation of the Maximum Order of the PDE, the Number of Variables,a

and the Bandwidth of the Jacobian Matrix with Optimal Orderingb

Max. PDE order Num. variables Bandwidth

Biharmonic (ψ, γ ) 4 2nr nz 4 min(nr , nz)

Streamfunction–vorticity (ψ, γ, η) 2 3nr nz 3 min(nr , nz)

Primitive variables (u, v, w, p) 2 4nr nz 4 min(nr , nz)

a Using second-order finite differences with nr points in radial and nz points in axial.
b Distance between the main diagonal and the furthest diagonal.

3. NUMERICAL TECHNIQUES

Discretization in space is accomplished using second-order centered finite differences,
both for the equations and the boundary conditions. The ordering of the variables has been
chosen to minimize the bandwidth of the linear systems. It depends on nr and nz , the
number of subintervals in each coordinate. As we have usually used equal spacing in both,
the ordering depends on the aspect ratio �. If � ≥ 1, the variables are ordered by rows; if
� < 1 they are ordered by columns; and in both cases, the values of γ and ψ are alternated.
The bandwidth of the linear systems is then 4 min{nr , nz}. Using other formulations of
the Navier–Stokes equations, the product of the number of variables times the bandwidth
increases, as shown in Table I.

The boundary conditions could also have been imposed using one-sided differences, but
this would increase the bandwidth without increasing the global accuracy of the solution.
Sensitive measures such as the location of the codimension-2 cusp point (see Section 4) are
much more sensitive to the spatial resolution (nr nz) than to how the boundary condition is
implemented.

3.1. Continuation Method

The time-independent governing equation for the basic state, xb, is

f (x, p) = Lx + N (x, x) = 0, (5)

where L and N are the discretized versions of the continuous operators in (2) and depend
on the parameters of the problem through the boundary conditions (3). The variable p in
(5) is the continuation parameter to be used, and may be any of the governing parameters in
the problem. Parameter and pseudo-arclength continuation methods [12] have been used to
solve (5) when the parameter p is varied. Second-degree polynomial extrapolation is used
as a predictor, and the Newton method is used as a corrector.

In the case of parameter continuation, the linear system to be solved in each Newton
iteration, for a fixed value of the parameter, is

Dx f (xi , p)(xi+1 − xi ) = − f (xi , p), (6)

where Dx f (xi , p) acting on a vector y is

Dx f (xi , p)y = Ly + N (xi ,y) + N (y, xi ).
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In the case of pseudo-arclength continuation, which is best suited in the presence of folds,
the bordered system that determines a unique solution is

f (x, p) = Lx + N (x, x) = 0, (7)

n(x, p) ≡ vT · (x − x0) + w(p − p0) = 0, (8)

with (x0, p0) the predicted next point along the curve of solutions and (v, w) an approxi-
mation to the tangent at (x0, p0). The linear system to be solved is now

( Dx f (xi , pi ) Dp f (xi , pi )

vT w

)(
xi+1 − xi

pi+1 − pi

)
=

(− f (xi , pi )

−n(xi , pi )

)
. (9)

In both cases, the linear systems are solved iteratively. Inexact Newton methods are
known to converge, if at each iteration the residual of the linear system is kept sufficiently
small [4]. They can retain quadratic convergence with a suitable selection of the tolerance
of the residual for the solution of the linear system at each Newton iteration.

3.2. Linear Stability

The linear stability of the basic state, xb, is determined by the eigenvalue from (4) with
largest real part (growth rate). If its real part is positive (negative), the basic state is unstable
(stable). To solve the eigenvalue problem, we have used subspace iteration [25] and the
Arnoldi method as implemented in the ARPACK package [13]. Both iterative techniques are
based on the power method and converge to the eigenvalues with largest moduli. Although
convergence properties are best known for subspace iteration, we have found that, for the
fluid dynamics problems presented here, Arnoldi iteration converges much more rapidly.

Since we are interested in the eigenvalues with largest real part, rather than largest moduli,
we implement shift-invert or Cayley transformation converting (4) to

(Dx f (xb) − β B)−1x p = λ̃x p (10)

or

(Dx f (xb) − β B)−1(Dx f (xb) − αB)x p = λ̃x p , (11)

respectively (see [18] for details).
The eigenvalues of (10) and (11) are related to those of (4) by

λ̃ = 1

λ − β
and λ̃ = λ − α

λ − β
, (12)

where α and β are real in our implementation. We have not considered complex shifts, as
they either introduce complex arithmetic or double the size of the linear system to be solved,
even though they are a natural choice to detect Hopf bifurcations.

The Arnoldi method acting on (10) converges to eigenvalues of largest moduli that
correspond to eigenvalues of (4) nearest to β. Acting on (11) with suitably chosen α and
β, Arnoldi converges to λ̃, which is related to the eigenvalues of (4) with largest real part,
through (12). The transformations leave the eigenvectors unchanged.
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3.3. Nonlinear Evolution Solver

In Lopez et al. [16], the time derivatives in (2) were approximated by a second-order
backwards difference; the linear term was treated implicitly; and a second-order backwards
extrapolation scheme was used for the nonlinear term, leading to

(
3

2δt
B − L

)
xk = 2

δt
Bxk−1 − 1

2δt
Bxk−2 + 2N (xk−1, xk−1) − N (xk−2, xk−2),

where δt is the time step and xk = x(t0 + kδt). This scheme was used to compute nonlinear
time periodic states for � = 2.5, Reb = 0, and Ret up to 4000 using a direct solver for the
banded linear equations. If one replaces the direct solver with an iterative solver based on
the generalized minimum residual method (GMRES) and ILU as outlined in this paper, the
nonlinear evolution solver can be formulated as fully implicit. This could be of considerable
advantage for very stiff nonlinear problems.

3.4. Preconditioning and Solving the Linear Systems

The most critical aspect in the different types of solvers listed above involves the solution
of large linear systems of the form

(A + cB)y = a, (13)

where a is known. The solvers differ in the specification of A and c:

continuation (parameter) A = Dx f (xi , p) c = 0

continuation (pseudo-arclength) A =
(

Dx f (xi , pi ) Dp f (xi , pi )

vT w

)
c = 0

linear stability A = Dx f (xb, p) c = −β

nonlinear evolution A = L c = −3/2δt .

For the continuation methods and linear stability analysis, the linear system (13) is solved
via the preconditioned generalized minimum residual method (GMRES). GMRES is an
iterative projection method. This class of methods produces sequences of approximations,
xm , to the solution of a linear system Ax = b, with an initial guess x0, which satisfy two
conditions that determine each particular method,

xm ∈ x0 + Km and b − Axm ⊥ Lm,

where Km and Lm are two m-dimensional linear subspaces. With these two conditions, xm

minimizes the Euclidean norm of the residual, b − Axm , over all the vectors in x0 + Km .
In the particular case of GMRES, Lm = AKm , and Km is the Krylov subspace Km =
{r0, Ar0, A2r0, . . . , Am−1r0}, where r0 = b − Ax0 (see [20] for implementation details).
The maximal dimension of the subspaces Km and Lm used in our calculations is named
irestart. If GMRES does not converge in irestart iterations, the method is restarted using
the latter approximation found as initial guess x0. For the nonlinear evolution, (13) can be
solved directly because A only contains the linear part of the Navier–Stokes equations, so
the linear system decouples into two independent subsystems, and further, only one initial
LU decomposition is needed.
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To precondition the linear systems that arise in Newton’s method and the linear stability
analysis, an incomplete LU decomposition (ILU) from SPARSKIT is used [21]. During
the continuation process, the ILU is updated only when GMRES fails to converge within
a predetermined number of iterations. This allows for many points along the continuation
curves to be computed using the same ILU decomposition. In some cases, using the lin-
earization about the zero solution (Reb = Ret = 0), which corresponds to preconditioning
with L , the Stokes operator, is enough for a continuation run over a long range of the control
parameter. This is the case for the continuation with � = 2.5, Reb = 0, and Ret ∈ [0, 2700]
that will be used later as a test case for the computation of the spectra. In other cases, far
from Reb = Ret = 0, the full Jacobian must be used.

We characterize the state of the solution at a point in parameter space (Ret , Reb, �) by the
value of γ at a convenient point, � = γ (r = 1/2, z = 3�/4). In Fig. 2, for Reb = 3000 and
� = 0.5, � is shown over the range Ret ∈ [−3000, 0], and on the �-curve are located (open
circles) the points at which incomplete LUs were computed during the continuation run in
Ret . Near the fold, Ret ∼ −2600, several ILUs were needed, due to the large variation of
the velocity field along the fold. The part of the Jacobian coming from the nonlinear terms,
N , undergoes significant changes (details of the fluid dynamics are given in Section 4).

The incomplete LU algorithms (ILU) perform a Gaussian elimination process on an
initial sparse matrix A to find an approximation to its LU decomposition, A = LU . During
the process, only certain selected entries in L and U are retained. To keep the memory
requirements to a minimum, we have used the version that only retains the lfil elements in
each column of L and each row of U of greater modulus. A tolerance can also be given

−3000 −2000 −1000 0

Ret

400

500

600

700

800

900

Γ

FIG. 2. Continuation run for Reb = 3000, � = 0.5. Open circles indicate the Ret values where the ILU
preconditioner was updated.
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FIG. 3. CPU time and required memory, as a function of lfil, for continuation runs using nr as indicated and
� = 2.5, nz = �nr , Reb = 0, and Ret ∈ [0, 2700].

for dropping small terms in the factorization. We have not used this feature or pivoting,
because we have not found them to improve the convergence for our problem. The size of
lfil has proven to be critical. It cannot be small if GMRES is to converge in a reasonable
number of iterations. Many tests have been made to obtain a criterion to select lfil. Two
representative cases are shown in Fig. 3 for the above-mentioned continuation runs with
nr = 60 and 80, � = 2.5, and nz = �nr . The CPU time decreases rapidly with lfil when
it is small, and then it is essentially constant for lfil above approximately 2nr . The number
of diagonals above and below the main diagonal of the original system is 4nr when � ≥ 1.
Below 2nr , the convergence is either very slow or there is no convergence at all. As the
memory requirement increases linearly with lfil, we have used lfil ∼>2 min{nr , nz}, giving
convergence with minimal memory requirements.

The other parameter that influences the CPU time and memory required is the dimension,
irestart, of the Krylov subspace used for GMRES. Figure 4 shows how CPU time decreases
with irestart for the values considered in the plot. Higher values would increase the CPU
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FIG. 4. CPU time and required memory, as a function of irestart, for a continuation run using nr = 80,
� = 2.5, nz = �nr , Reb = 0, and Ret ∈ [0, 2700].

time due to the orthogonalization process used to obtain the Arnoldi basis during GMRES
iterations. Again, as the memory increases with irestart we have used values as small as
possible (between 20 and 50 in most cases).

When lfil and irestart are selected as described, GMRES converges in a very small
number of iterations. During the continuation process it ranges from 1 to 30 except very
near the points at which the ILU is updated. For the linear systems in the stability analysis,
GMRES converges even faster (in about 10 iterations) because the Jacobian used in the ILU
is calculated precisely at the solution for which the spectrum is sought.

4. NUMERICAL RESULTS

We chose a single flow that provides stringent tests of all aspects of our computational
package: spatial resolution of boundary and internal layers and the determination of spectra
and eigenmodes. The swirling shear flow introduced in Section 2 (see schematic in Fig. 1)
has been extensively studied for Reb = 0 (e.g., [8–10, 14, 28]). The basic state is non-
trivial with structure in (r, z) consisting of an Ekman layer, a swirling wall jet, and vortex
breakdown recirculations on the axis. It loses stability via a supercritical Hopf bifurcation
that, for � in the neighborhood of 2.5, preserves SO(2) symmetry. This problem provides
a good test case for convergence tests. The results of these tests are detailed in Section 4.1.
When Reb �= 0 and Reb Ret < 0, the Ekman boundary layer on the counter rotating top
separates and forms a free shear layer. This free shear layer sweeps out a large range of
the computational domain as parameters (Ret , Reb, �) are varied continuously, and as
such presents a challenge for efficient continuation of solution branches. Furthermore, this
problem also has a cusp bifurcation [15] leading to hysteresis as parameters are varied and
to the coexistence of multiple solutions, including unstable equilibria, which also provide
interesting tests for the computational methods. The results of these tests are presented in
Section 4.2.

4.1. The Hopf Bifurcation at Reb = 0, Λ = 2.5

For Reb = 0 and � in the neighborhood of 2.5, Gelfgat et al. [10] have established
that the steady axisymmetric basic state loses stability via a supercritical Hopf bifurcation
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that preserves the SO(2) symmetry. In Lopez et al. [16], we have further studied the linear
stability of the basic state at � = 2.5, showing that it undergoes successive Hopf bifurcations
and that the associated eigenmodes account for the primary characteristics of the various
nonlinear states that have been observed experimentally [24]. The flow physics are described
in detail in Lopez et al. [16], and here we explore the computational issues associated with
those results. Furthermore, here we examine the use of ILU, which was not utilized in Lopez
et al. [16].

The convergence of the eigenvalue problem is by far the most sensitive computation
to grid resolution. Throughout, we use a uniform grid with nz/nr = �, where nr and nz

are the number of grid intervals in the radial and axial directions. We now compare the
ψp-eigenmodes corresponding to the most dangerous eigenvalue, i.e., that with largest real
part, for Reb = 2700 and � = 2.5, computed with nr = 70 and nr = 140 (the first Hopf
bifurcation of the basic state for � = 2.5 takes place at Reb = 2706). In fact, this eigenvalue
is one of a pair of complex conjugates, and so the eigenvector has a harmonic temporal
dependence. For the eigenvalue pair σ1 ± iω1 and the associated complex eigenvectors
yR ± iyI , the corresponding eigenmode has the form

Real
(
e(σ1+iω1)t (yR + iyI )

) = eσ1t (yR cos ω1t − yI sin ω1t).

Figure 5 shows six equally spaced phases of the streamlines corresponding to the eigen-
mode yR cos ω1t − yI sin ω1t over one period τ1 = 2π/ω1. For nr = 70, ω1 = 444.4, and
for nr = 140, ω1 = 459.6. Note that the complex eigenvectors are determined up to an
arbitrary phase. In the figure, we have adjusted the phase up to π/30 in order to synchronize

(a) ψp-eigenmode, nr = 70

(b) p-eigenmode, nr = 140
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b))
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FIG. 6. Variations of (a) σ1 and (b) ω1 of the most dangerous eigenvalue with nr , for Ret = 2700 and � = 2.5.
The solid lines are fits of the form a + b/r 2 for nr ≥ 110.

the oscillations between the nr = 70 and nr = 140 cases. From this figure, we see that there
is very little difference in either the temporal or spatial structure of this most dangerous
mode, and so with nr = 70, all salient features of the flow are accurately captured. To obtain
a more quantitative measure of the convergence with increasing nr , we examine how σ1

and ω1 vary with nr .
In Fig. 6, σ1 and ω1 for Reb = 2700 and � = 2.5 are plotted for nr ∈ [40, 140] in steps

of 10. We see from this figure that for nr ≥ 90, the system is well within the asymptotic
regime where the computed σ1 and ω1 converge as n−2

r . This quadratic convergence is to
be expected from our second-order scheme. The fits shown in the figure are

λ1(nr ) = −0.18454 + 465.167i − (18230 + 108912i)/n2
r .

This allows us to estimate the asymptotic value limnr →∞ λ1 = −0.18454 + 465.167i. Com-
pared with the value at nr = 140, −1.1159 + 459.617i, we have a relative error of 1.2%. Fur-
thermore, this error is not simply randomly oriented in the complex plane.
Figure 7 shows the variation of this eigenvalue with Reb for nr = 70 and nr = 140,
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FIG. 7. Eigenvalues on branch 1, λ1 = σ1 + iω1, evaluated with nr = 70 (dashed curve and circles) and
nr = 140 (solid curve and squares) over a range of Ret ∈ [2500, 4000] with � = 2.5. The asymptotic estimate at
Ret = 2700 is the plus symbol.

together with the asymptotic estimate at Reb = 2700. Although there are variations due
to nr in the location of the eigenvalues in the complex plane, they are located on a well-
defined curve. In essence, computations of eigenvalues using a relatively low nr correspond
to a precise computation at an effectively lower Reb. This phenomenon can be traced back
to the degree to which the Ekman layer can be resolved with finite nr .

4.2. The Cusp Bifurcation for Λ = 0.5

The codimension-2 cusp bifurcation for � = 0.5 occurs at (Reb ≈ 1126, Ret ≈ −1011).
From this cusp point, two lines of saddle-node bifurcations extend, with approximate equa-
tions Reb = −aRet − b, with (a, b) = (1.304, 192.6) for one and (1.132, 18.5) for the
other. The saddle-node lines are straight in the neighborhood of the cusp point. The loci
of all these bifurcations were determined by a sequence of continuation runs, fixing Reb

and varying Ret . The results of these runs are summarized in Fig. 8, showing the devel-
opment of the fold in the solution manifold. Figure 9 shows a detail of the fold for fixed
Reb = 3000. The dots along the curve correspond to the computed steady states during the
continuation run. In the fold region, there coexist three distinct equilibria on sections of the
curve (branches) delimited by the two saddle-node bifurcations, two stable (top and bottom)
and one unstable (middle). Note that the arclength increment is relatively small in the fold
region, where the structure of the solutions changes rapidly with parameter variation. The
open squares are selected equilibria on each of the three branches, and their flow structure
is illustrated in Figs. 10, 11, and 12. These figures are of the streamlines (left) and vortex
lines (right) projected onto a meridional (r, z)-plane. On all three branches, the most salient
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FIG. 8. Cusp bifurcation of the basic state for � = 0.5 and counterrotation (Ret Reb < 0). Solid lines corre-
spond to continuation runs with fixed Reb with nr = 200 and nz = 100.
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FIG. 9. Detail of a continuation run in Fig. 8 with Reb = 3000, showing two saddle-node bifurcations in the
cusp region. Dots correspond to the steady solutions computed during the continuation, and the open squares
indicate the solutions whose spatial structure is depicted in Figs. 10, 11, and 12.
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Ret = −2510
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Ret = −2686
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TABLE II

Comparison of the CPU Time Needed to Find a Spectrum

with Different Preconditioners

Preconditioner CPU time (s) lfil

Full Jacobian with optimal lfil 1,364 220
Stokes operator with optimal lfil 17,181 220
Stokes operator with the whole band 21,550 400

is not helpful. On the contrary, it can increase the computational cost. All computations
were performed on a personal computer with an AMD Athlon processor at 800 MHz.

Finally, we have studied the dependence of the CPU time on the dimension of the system.
The computational cost of solving linear systems or eigenvalue problems by direct methods
grows as the third power of the dimension. Efficient methods for large problems must reduce
this power noticeably. Figures 14a and b show the results for a continuation run and for
the calculation of a spectrum, respectively. The first case corresponds to the continuation
shown in Fig. 2. The parameters are � = 0.5, Reb = 3000, and Ret ∈ [−3000, 0]. The
computation includes several ILUs and the solution of many nonlinear systems. This would

Ret = −2582
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FIG. 13. Spectra for a case on each of the three branches (showing only the 20 most dangerous eigenvalues).

be a typical calculation when studying the stationary solutions of a fluid problem. The curve
fit shows a power law dependence with an exponent of 1.8. For the spectrum calculations,
the parameters are � = 0.5, Reb = 3000, and Ret = −2667, and the power law exponent is
1.6. These results show that the methods used are suitable for problems of large dimension.
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FIG. 14. CPU time versus (a) total number of variables, when computing the continuation curve of Fig. 2
(the slope of the adjusted straight line is 1.80), and (b) total number of variables, when computing the 20 most
critical eigenvalues in the middle of the fold at � = 0.5, Reb = 3000, and Ret = −2667 (the slope of the adjusted
straight line is 1.63).

5. CONCLUDING REMARKS

We have presented and shown the efficiency of a numerical package for the study of
large systems. A comprehensive modular approach has been followed, and the package
contains a Newton solver to determine steady states (equilibria), a linear stability solver,
and a time evolution code. Any one of these components may be better suited to a particular
formulation, but then the other aspects may not. In particular, if equilibria are determined via
one formulation/discretization and their stability analyzed via another, the stability results
may not be reliable. This is particularly the case when the flow has small-scale, dynamically
important features, such as boundary and shear layers, and the small differences in their
treatment using distinct formulations can, and often do, result in both quantitative and
qualitative differences in the spectra.

All the linear systems in the various aspects of the problem necessitate iterative solvers
due to their very large size. We have used Krylov methods, and these require efficient
preconditioning. In the test cases detailed here, finite differences were used to discretize
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the PDE, and the use of incomplete LU (ILU) as a preconditioner has been found to be
very efficient. If spectral discretization were used, the choice of preconditioner is not so
straightforward, as the associated Jacobian matrix is typically full. However, ILU can also
be readily used in finite-element, finite-volume, and other schemes leading to banded and/or
sparse Jacobians.

Large systems in fluid dynamics come about when the Reynolds numbers are large and
the nonlinear terms (inertia) in Navier–Stokes become dynamically significant. Whereas the
techniques have been applied to test problems in cylindrical geometries in this
paper, they are readily applicable to problems in other geometries (the application is imme-
diate if the coordinate system is orthogonal). Our choice of test problem for the numerical
schemes is one where boundary and shear layers are dynamically significant, leading to
rich and complicated bifurcations and nonlinear dynamics. These problems have been ex-
tensively studied previously, both numerically and experimentally, so there is a reliable
database for comparisons. Using the present schemes, we have computed the basic states
more efficiently than previously, and determined their stability with excellent agreement
with previous studies. Specifically, we have studied in one case a sequence of Hopf bifur-
cations of the basic state (Section 4.1), and in the other (Section 4.2), a codimension-2 cusp
bifurcation, with its associated saddle-nodes and hysteresis fold structure.

These stringent tests of the schemes lead to the following observations:

• It is necessary to use the full Jacobian in the preconditioner. Although using only the
Stokes operator is usually sufficient for low Reynolds numbers, for the test case where
inertia is important, we have observed a 10-fold speedup by using the full Jacobian. Note
that our test cases actually have moderate Reynolds numbers of order 103; geophysical and
aerodynamics applications typically have Reynolds numbers of 106 and larger, so in these
cases the use of the full Jacobian is expected to have a larger impact.

• The ILU preconditioner and Arnoldi and GMRES methods have a multitude of tunable
parameters. From our experience with the test cases, two stand out as needing critical
attention: lfil that measures the maximum number of elements of each row of L and U,
and irestart that fixes the dimension of the Krylov subspace in GMRES. Both have clearly
identifiable optimal values that depend on the size of the system (i.e., the spatial resolution
of the Navier–Stokes equations).

• The growth of the CPU time with the size of the system is moderate, obeying a power
law with exponent around 1.7. This should be compared with direct methods, where the
exponent is 3. Thus, the methods we have considered are very well suited to large systems.
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